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Research summary

e Unsupervised learning

* Geometric inference and modeling for topic models
(Yurochkin & Nguyen, 2016; Yurochkin et al., 2017a, 2018a)

* Clustering grouped data using Optimal Transport (Ho et al., 2017)

e Supervised learning
* Regression with interaction selection of unbounded order

(Yurochkin et al., 2017b)

* Neural networks based on convolution on graphs. Joint learning of the neural
network parameters and graph adjacency matrix (Yurochkin et al., 2018b)
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Unsupervised learning




Bayesian approach
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Graphical models
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Geometry of Bayesian
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@ Geometric Latent Dirichlet Allocation
@® Inferring latent geometry

© Experimental results

O Modeling latent geometry

® Ongoing work

® Modeling interactions
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(T TN TN TR NN [P Latent Dirichlet Allocation

® Geometric Latent Dirichlet Allocation
* Latent Dirichlet Allocation
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(T TN TN TR NN [P Latent Dirichlet Allocation

LDA: data generation

A
=
*

-O1(0—C

Latent Dirichlet Allocation (Blei et al., 2003) generative process:
e Fork=1,... K
* sample a topic Bx ~ Diry(n) over V unique words
e For each document m=1,..., M
* sample topic proportions 6, ~ Dirk(c)
* for each word position n, = 1,..., Ny
» pick a topic label z,,,|0m ~ Categorical(6m)

» sample a word dp,,|2p,,, 1, .. Bk ~ Categorical(f3,, )
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Geometric Latent Dirichlet Allocation

LDA without z

Latent Dirichlet Allocation

(0% M K

Integrating z out for each of the M documents:
e For each document m=1,..., M

* sample topic proportions 0, ~ Dirk(a)

* compute word probabilities for a document p,, = Zle Omi Bk € AVT

* generate a document wy|pm ~ Multinomial(pm, Nim)
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Geometric Latent Dirichlet Allocation WeXTUETERVIEI NNV

® Geometric Latent Dirichlet Allocation

* Geometric view of LDA
@® Inferring latent geometry
© Experimental results
O Modeling latent geometry
® Ongoing work

® Modeling interactions
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Geometric perspective of LDA

AN ) Topic poytope: B = Conv(fy, ..., k)
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Geometric perspective of LDA

B3 b Topic poytope: B = Conv(fy, ..., Bk)

Barycentric coordinates: 6, ~ Dirg(«)
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Geomstric view of LDA
Geometric perspective of LDA

Word 2

Topic poytope: B = Conv(f3y, ..., Bk)
Barycentric coordinates: 6,, ~ Dirg(«)

K

Cartesian coordinates: p,, = Z&mkﬂk
k=1

Iz Word 4
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Geomstric view of LDA
Geometric perspective of LDA

Word 2 .
Topic poytope: B = Conv(f5y, ..., Bk)
Barycentric coordinates: 6, ~ Dirg(«)

K
Cartesian coordinates: p,, = ZGmkﬁk
k=1

Document: w,, ~ Multinomial(pm,, Nm)

Normalized document: w,, = w,,/N,,

Iz Word 4
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Geomstric view of LDA
Geometric perspective of LDA

Word 2

Word 1

ﬂl Word 4

Figure: Observed normalized documents
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Geometric Latent Dirichlet Allocation WeXTUETERVIEI NNV

Geometric Surrogate Loss to the Likelihood

MV
Multinomial maximum log-likelihood: Z Z Wi log Wpn;

MoV
LDA log-likelihood: Z Z Wi log (Z t‘)mkﬂk;>
i=1 k=1

Goal: find B = Conv(f4, ..., k) containing all wy,..., wy
M
Geometric objective: Npy min ||x — W[5
) ,;1 m M0 | mll2
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Geometric Latent Dirichlet Allocation WeXTUETERVIEI NNV

Geometric Surrogate Loss to the Likelihood

MV
Multinomial maximum log-likelihood: Z Z Wi log Wpn;

MoV
LDA log-likelihood: Z Z Wi log <Z t‘)mkﬂk;>
i=1 k=1

Goal: find B = Conv(f4, ..., k) containing all wy,..., wy
M
Geometric objective: Npy min ||x — W[5
) mzl m M0 | mll2

Topic proportions: given B, 0y,,1 can be obtained as the barycentric coordinates
of the projection of wp 1 onto B for a new document.
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Inferring latent geometry

@® Inferring latent geometry
* Geometric Dirichlet Means
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(S CHEA B NN Geometric Dirichlet Means

Step 1: weighted k-means

Proposition (Y. and Nguyen, 2016)

Subspace spanned by optimal weighted k-means centroids is equal to the subspace
of weighted low rank matrix approximation under mild relaxations.
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(S CHEA B NN Geometric Dirichlet Means

Step 2: geometric correction
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(S CHEA B NN Geometric Dirichlet Means

Step 2: geometric correction

1.25 1.50 175 2.00 2.25 2.50 2.75 3.00 3.25

Theorem (Y. and Nguyen, 2016)

If given samples from the true topic polytope, GDM is consistent if either true
topic polytope is equilateral or a — 0.
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Inferring latent geometry

@® Inferring latent geometry

* Conic Scan-and-Cover

17 /59



A Cone of light
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Conic Scan-and-Cover (CoSAC): Cones

1: Cp = ﬁ Zm Pm o
2: Pm ::pm—ép, m=1...,.M
3 A ={1,....M}; k=1 o
4: while A, # () do "
5. vk = argmax ||Bm|2
Pm:mEAx 00
6:  Sw(vk) ={m: deos(Pm, vik) < w}
T: Ax = Ak \Sw(vk) -
8: k=k+1 . o
9: end while i M

Figure: Incomplete coverage using cones

10 /59



STOPA EC TR Conic Scan-and-Cover

Coverage with Cones

Proposition (Y., Guha and Nguyen, 2017)

For choice of w in some range (w1,wz), a complete coverage of the topic polytope

is achievable with cones only, such that each cone contains exactly one topic
vertex.
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STOPA EC TR Conic Scan-and-Cover

Coverage with Cones

Proposition (Y., Guha and Nguyen, 2017)

For choice of w in some range (w1,wz), a complete coverage of the topic polytope
is achievable with cones only, such that each cone contains exactly one topic
vertex.

® W = l—r/RmaX
* r — inradius
* Rmax — maximum distance from incenter to a topic
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STOPA EC TR Conic Scan-and-Cover

Coverage with Cones

Proposition (Y., Guha and Nguyen, 2017)

For choice of w in some range (w1,wz), a complete coverage of the topic polytope
is achievable with cones only, such that each cone contains exactly one topic
vertex.

® W = 1_r/Rmax
* r — inradius

* Rmax — maximum distance from incenter to a topic
o w2 = max{(e,)/(2R%) | max (1 cos(bi, by)}

* amin — minimum distance between topics
* cos(bj, bx) — cosine of an angle between topics i and k
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STOPA EC TR Conic Scan-and-Cover

Coverage with Cones

Proposition (Y., Guha and Nguyen, 2017)

For choice of w in some range (w1,wz), a complete coverage of the topic polytope
is achievable with cones only, such that each cone contains exactly one topic
vertex.

® W = l—r/RmaX
* r — inradius

* Rmax — maximum distance from incenter to a topic

o wy = max{(2,,)/(2R2,), | max (1~ cos(by, by}

* amin — minimum distance between topics
* cos(bj, bx) — cosine of an angle between topics i and k

o Angular separation — cos(b;, by) <0 forany i,k =1,...,K
*we (1—@,1) £0
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Conic Scan-and-Cover (CoSAC): Cones and Sphere

Stop when

0.34
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Figure: Complete coverage using cones and
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STOPA EC TR Conic Scan-and-Cover

Coverage with Cones and Sphere

Proposition (Y., Guha and Nguyen, 2017)

For choice of w in some range (w3, w>), we can choose a sphere of radius R along
with cones, with each cone containing exactly one topic vertex, such that w3 < ws.

° If Rmin ~ Rmax
* L«J3—>OBSR—> Rmin
e Recommended parameters

* for cones choose w = 0.6

* for sphere choose R = median of {||p1]2, ..., [1Bm]]2}
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STOPA EC TR Conic Scan-and-Cover

Coverage with Cones and Sphere

Proposition (Y., Guha and Nguyen, 2017)

For choice of w in some range (w3, ws), we can choose a of radius R along
with cones, with each cone containing exactly one topic vertex, such that w3 < ws.

° If Rmin ~ Rmax
* w3%0as73% Rmin
e Recommended parameters

* for cones choose w = 0.6
*

Theorem (Y., Guha and Nguyen, 2017)

As M — oo the minimum matching distance between estimated and true topics
— 0 almost surely. The estimated number of topics also equals the true number of
topics almost surely.

22 /59



STOPA EC TR Conic Scan-and-Cover

Conic Scan-and-Cover (CoSAC) at work

Data is simulated according to the LDA generative process
a=0.1,7n=0.1, V=2000, K =30, M= 15000.

topic v le—w = 0.60 le—w = 0.60 le—w = 0.60
; So(va) Sulvan)
L )
i <topic v
. ‘ _.é_,topic v30
= & ¢ R =0.047
£ % .
e 'ﬁt . N
Wy - K .
Ay Ay Az
cosine distance d..(v1.p;) cosine distance d...(vas, pi)

cosine distance do(v30, ;)

Figure: CoSAC iterations 1, 26, 30. Red: documents in the cone S, (vk); Blue: documents in the active
set Ag;q for next iteration. Yellow: documents ||pmll2 < R.
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Conic Scan-and-Cover (CoSAC): Outliers

e If cone contains less than A\ portion
of data points, ignore cone

e Idea: quantify P(Ac(v1)) using Beta
distribution

e Recommended A = 0.001

Proposition (Y., Guha and Nguyen, 2017)

For w € (wx,wz), each cone around a topic contains at least A proportion of
documents.
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Conic Scan-and-Cover (CoSAC): Mean-Shifting

Farthest document as topic estimate

vk = argmax || pm||2 — high variance!
Pm:meEAk

1: while v not converged do {mean-shifting}
2:  Find cone of near documents

Sw(vk) = {m : dcos(VT/m7 Vk) < w}

3:  Update direction

vk = Z Wi/ card(S,(vk))

meS., (vk)

4: end while
Mean-shifting leads to reduced variance of topic direction estimate.
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CoSAC for Anchor words

Anchor word has non-zero probability in a single topic

Each topic is assumed to have an anchor word

Anchor rows of word co-occurrence matrix form a simplex containing rest of
the rows

Use CoSAC to find anchor words

Learn topics with RecoverKL (Arora et al., 2013)
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Experimental results

© Experimental results
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Simulations: document length

a=0.1,7=01 V=2000 K=15 M = 30000.

Minimum Matching distance

0.3

0.2

0.1

0.0

—¥— cscRecoverKL
—@— RecoverKL
—i— CoSAC
AR —A— GDM

N —e— Gibbs

/
%/ N N —— SVI
/

50 1(‘)0 1%0 260 2%0 3(‘)0
Length of documents Nm
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Simulations: number of topics

a=0.1,7=0.1, V=2000 M =5000, N, = 500.

Absolute topic number error

40
N

—¥— cscRecoverKL
—— CoSAC
—A— Bayes factor

30
1

20
N

10
N

U U T
10 20 30 40

True number of topics K
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Experimental results

New York Times results

We analyzed 130000 NYT articles with vocabulary V = 5320.

K  Perplexity = Coherence Time
cscRecoverKL 27 2603 -238 37 min
HDP Gibbs 221+5 1477+1.6 —442+1.7 35 hours
LDA Gibbs 80 1520+1.5 —30040.7 5.3 hours
CoSAC 159 1568 -322 19 min
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Experimental results

New York Times topics

Cooking ~ Stem Cells  Antitrust LGBT  Elections
cup cell Microsoft gay ballot
minutes stem window lesbian Al Gore
tablespoon research company right election
add human software sex votes
teaspoon scientist case marriage  recount
pepper cloning system group Florida
oil patient operating  couples court
sugar disease computer  sexual vote
butter phones antitrust  partner voter
pan researcher court issue count
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Modeling latent geometry

© Modeling latent geometry
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Modeling latent geometry

Topics evolve

Figure: Dynamic Topic Models (Blei & Lafferty, 2006) on Science

"Theoretical Physics"

[ T T T T T 1
1880 1900 1920 1940 1960 1980 2000
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Modeling latent geometry

Online learning

But ... I was

only gone
30 seconds.

FIER

~ 240k tweets every 30 seconds
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Modeling latent geometry

Streaming Dynamic Matching

Early Journal Content: 400k articles, 4500 unique words, 40 years.

Perplexity Time Topics Cores used

SDM 1181  24min 124 1
DTM 1194  56hours 100 1
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Streaming Dynamic Matching

Topic "epidemics" top 15 words dynamics

012 — fever
— total
number
o tuberculosi
popul
3 . .
= 0.08 diphtheria
Q
g — month
2 i i scarlet
S 006 Topic discovery
° measl|
g — typhoid
2
0.04 — enter
—end
— smallpox
0.02
—rate
— annual
0.00 ————
1885 1890 1895 1900 1905 1910 1915 1920
year
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Geometry evolves

ICML 2017 ICML 2018
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Geometry evolves

ICML 2017 ICML 2018
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Modeling latent geometry

Geometry evolves

ICML 2017 ICML 2018
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Modeling latent geometry

Topic polytope dynamics on sphere
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Modeling latent geometry

Topic polytope dynamics on sphere

yl\
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Modeling latent geometry

Topic polytope dynamics on sphere

yl\

G 6,

\4} Vo

><=V

37 /59



Modeling latent geometry

Topic polytope dynamics on sphere
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Modeling latent geometry

Dynamic Beta process: Global topics

Global topics: Q|yo, H ~ BP(vo0, H).
Q=" qid,.

Topic i: 0; := {Hft)};l ~ H,q; €[0,1].
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Modeling latent geometry

Dynamic Beta process: Global topics

Global topics: Q|vo, H ~ BP(o, H).

Base measure H :
0160 ~ WMFO Y ), £ =1,..., T,

0 vMF(-,0) — uniform on sphere.
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Modeling latent geometry

Dynamic Beta process: Global topics

Global topics: Q|vo, H ~ BP(o, H).

Base measure H :
0160 ~ WMF(O Y 7o), t=1,..., T,

050) ~ vMF(+,0) — uniform on sphere.

Global topics at time t: Q; = Z qidy -
’_ i
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Modeling latent geometry

Dynamic Beta process: Local topics

0y
(1)
0
2
6%

Global topics at time t: Q; = Z qiéel(t).

0
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Modeling latent geometry

Dynamic Beta process: Local topics

Local topics T()|Q; ~ BeP(Q;),
T(t) = Z bft)(sogt), blgt)|q; ~ Bern(q,-).
i

®
05
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Modeling latent geometry

Dynamic Beta process: Local topics

(1)
0

2
6%

TO= {6 b =1i=12..).

0
95
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Modeling latent geometry

Dynamic Beta process: Local topics

0y

(1) )
ff; v(zt) T — {elgt) : b’(t) =1,i=1,2,...}.

We can estimate noisy measurements:

WOITO ~ wWMF(TO, 1), k=1,...,K®.

(1) ()
V3 05
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Modeling latent geometry

Inference: Matching problem
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Modeling latent geometry

Inference: Matching problem
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Modeling latent geometry

Inference: Matching problem

®
93
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Streaming Dynamic Matching

MAP streaming estimation: argmaxP(6(®), B®|g(t=1) (1),
0(1), B(t)

B(t) 1 iff v ) matched to global topic i.
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Streaming Dynamic Matching

MAP streaming estimation: argmaxP(6®), B(®)|g(t=1),
0(0,B()

Given matching solution for () is in closed form:

7'00 —|— 1 v,E )

a0 — 1,601 —
nmw Vvl

V).

41 /59



Streaming Dynamic Matching

MAP streaming estimation: argmaxP(#(), B(®|9(t=1) y(¥)),
ot B()

argmax Bl i, k), where
g(t) Z lk )

ik
mt Y (1, 0
R( ) |og ﬁ + ”7'00,- + v, ||27
-m;
m,(-t_l) — popularity of topic i before time t.
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Streaming Dynamic Matching

MAP streaming estimation: argmaxP(6(®), B®|9(t=1) (1),
00, B

(OR(;
argmax B, 'R(i, k
gmax > B, 'R k)

Solve with Hungarian algorithm!
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Streaming Dynamic Distributed Matching

Key ideas:
e Model with Dynamic Hierarchical Beta Process
e Estimate using Hungarian algorithm fixing all but one group

e lterate in coordinate descent style

Modeling 3 million Wikipedia articles

Perplexity Time Topics Cores used

SDM 1236 35min 182 20
DM 1260  14min 183 20
SDDM 1228 12min 184 20
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Ongoing work

® Ongoing work
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Generalized GDM

GDM: small « or equilateral simplex J
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Generalized GDM

GDM assumption violation: o = 1 and skewed simplex J
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Generalized GDM

New approach: any a and any simplex J
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Generalized GDM

New approach: =5 J
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Some interesting statistics:
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Some interesting statistics:
e This presentation has 54 images
e Among them, 31 triangle and 23 circles

o Thousands of triangles has been drawn inside West Hall over the
past 4 years
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Modeling interactions

® Modeling interactions
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Modeling interactions

Regression with Interactions

(Y|X = WO+ZWIXI+ZBJ HXI

Jj=1 i€Z;
® Wwp,...,wp are bias and linear coefficients
e f(1,...,08, are coefficients of the J interactions
e 7i,...,Z; are sets of indices of interacting variables

Challenges:
e 20— D — 1 of possible interactions - infeasible even for D = 30

e how to model coefficients f;s for all interactions
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Modeling interactions

Hypergraph of Interactions example

2 2

Season 1 0

Z= | ProductID| 1 1
Color 1 0

City 0 1
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Modeling interactions

Hypergraph of Interactions

We model collection of interactions Z3,...,Z; as a hypergraph.
Definition

Let S={e1,...,ep} be a set of D objects and Z = {Z4,..., Z;} set of J subsets
of S: Z; C S, for j=1,...,J. Then we say that G = (S, Z) is a hypergraph with
D vertices and J hyperedges.

o let S={1,...,D}, then G = (S, Z) is a hypergraph of interactions
e Z - incidence matrix of interactions: Z € {0,1}P*/, where Z;,; = Z,,; = 1 iff
iy and i> are part of a hyperedge indexed by column/interaction j
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MiFM: Multi-way interacting Factorization Machine

Factorization Machines (FM) (Rendle, 2010)
o B(Y|x) = wo+ X2, wixi + S1<icj<p BiiXix;

e factorize interaction weights:
Biji= Z,’le Vik Vjk, where V € RP*K and K < D

Combining with Hypergraph of Interactions Z:

D K

MiFM: y := wp + Z wix; + ZZ H X Vik

i=1 j=1 k=1i€Z
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Real Data Application: Retail

o - —® = Fri o - == = Fri
3 )
- T - ¥ - Sat - ¥ - Sat
[ —A— Sun —A— Sun
1l
i1 n
1 n ]
2 M l'YXI b d K, 'YI -
3 w‘ N 1y, "
1
1 Y

0

MiFM_a coefficient

T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Week of the year Week of the year

Figure: Coefficients for city - store ID - day of week - week of year interaction: (left) store in Merignac;
(right) store in Perols
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Real Data Application: Genetics

Finding interactions between genes (i.e. epistasis) based on the data from

Himmelstein et al. (2011).

5-way 5-way no low

MiFM;

MiFM,,

FM

Logistic MiFM;
Logistic MiFM,
Logistic

MLP

SVM

RF

0.775
0.771
0.501
0.883
0.860
0.460
0.870
0.473
0.887

0.649
0.645
0.500
0.628
0.623
0.461
0.625
0.451
0.628
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THANK YOU!
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Additional simulations results

Simulations: corpora size

a=0.17=0.1, V=2000, K=15, N, = 500. J
—¥— cscRecoverKL
—@— RecoverKL
0 —i— CoSAC
27 —&— GDM
3 —e— Gibbs
g —— VI
S 4
R
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Additional simulations results

Simulations: run-time
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