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Fairness: A case study

Example: Sentiment analysis — classify words as positive or negative
Positive: admire, adorable, joy, lucky, talented, ... V

Negative: aggressive, distrust, nasty, radical, ... x

Deep Learning + Word Embeddings -> 95% test accuracy.
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Deployment Concerns

What is a sentiment of a name?

Common European-American names:
Adam, Ryan, Paul, ..., Courtney, Meredith, Megan, ...

Common African-American names:
Alonzo, Leroy, Tyree, ..., Shereen, Sharise, Tawanda, ...

Names are from “Semantics derived automatically from language
corpora contain human-like biases” (Caliskan et al., 2017)
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Does Group Fairness help?
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Fairness is Violated for Individuals
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Individual Fairness
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Yurochkin et 'al., ICLR 2020
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Accuracy Is Preserved
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Yurochkin et 'al., ICLR 2020




Definitions of algorithmic fairness

Roadmap



Group Fairness

Algorithm performs similarly on groups of individuals

Y — true label
A — protected attribute

A

Y — prediction

Demographic Parity: Y |l A
Equalizedodds: Y 1L A | Y
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Evaluating Group Fairness

Demographic Parity: Y [ A

Compare average outcome for men and women

Test data: (x1,a1),..., (TN, aN);
model to audit h : X — )Y

Output DP = >, Z(a;=male, h(z;)=1) >, Z(a;=female, h(z;)=1)

> Z(a;=male) > L(a;=female)
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Evaluating Group Fairness

Equalizedodds: Y 1L A | Y

Compare class accuracies for men and women

Test data: (xlayla al)a « vy (xNayna aJN);
model to audit h : X — Y

14

> ; L(a;=male, y;=0) > ; Z(a;=female, y;=0)
| >2; Z(a;=male, y;=1, h(x;)=1) > ; L(a;=female, y;=1, h(x;)=1)
Measure E01 _ > L(a;=male, y;=1) o > . Z(a;=female, y;=1)

Output EO = 2(EO, + EOy)
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What Group Fairness definition did we check? ’

¢ Protected Attribute
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Individual Fairness

(Dwork et al. 2012)

Algorithm treats similar individuals similarly

dy(h(x1),h(x2)) < dy(x1,x2) for all 1,20 € X
e ML modelisamap h: X — )

e dy measures similarity between outputs

e Fair metric dy measures similarity between inputs
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Evaluating Individual Fairness

Prediction Consistency

Compare predictions on similar inputs

Occupation prediction from a person’s biography:

He graduated from law school with honors = Attorney

She graduated from law school with honors mmp ???Paralegal???

_ 2 Z(h(zi[he])=h(z;[she]))
Output PC = 7



Questions?
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Is “blindness” a solution?

5( aﬂj e goldman sachs women credit X Q Go gle apple women credit X Q
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\&¥ @dhh

Apple Card | bmplaints

Nov 10, 2019 —T| card was “sexist”

s The issuch a sexist program. My &8
e \ife and | filed joint tax returns, live in a community-

Apple Card a
Nov 11, 2019 — D g ...

e Oroperty state, and have been married for a long time. Yet S

Apple Card credit

g Apple's black box algorithm thinks | deserve 20x the

apple card disc

Q Al B News

About 6,810,000 rq
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credit limit she does. No appeals work.

goldman sachs
how many appld
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Nov 12,2019 — .. plems last ... A
been discriminato

oreeeeere 9K Retweets  3.8K Quote Tweets 28K Likes
Goldman Sa(

Nov 9, 2019 — A Wall Street regulator is opening a probe into Goldman Sachs Group Inc.'s Nov 11, 2019 — Danish entrepreneur David Heinemeier Hansson says his credit limit is ...
credit card practices after a viral tweet from a tech entrepreneur .. differences in Apple Card credit lines for male and female customers.



. Aurélien Geron
@aureliengeron

| noticed that DistilBERT loves movies filmed in India,
but not in Iraq, so | plotted the result for each country:
the resulting map is scary. #aibias

import pipeline g?;f e

line("sentiment-a_
movie was filmed p
movie was filmed

IVE', 'score'

12:35 AM - Mar 20, 2022 - Twitter Web App

374 Retweets 67 Quote Tweets 1,984 Likes
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from transformers import pipeline

classifier = pipeline("sentiment-analysis")
classifier(["The movie was filmed in India.",
"The movie was filmed in Iraqg."])

[{'label': 'POSITIVE', 'score': 0.9783285856246948},
{'label': 'NEGATIVE', 'score': 0.9872057437896729}]



Road Mmap Practical fairness methods

 Identifying fairness violations
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Identifying Fairness violations
Group Fairness: measure DP (EO) on audit data

Test data: (z1,a1),..., (N, aN);
model to audit h : X — Y

>_; L(ai=male, h(z;)=1) >, Z(a;=female, h(z;)=1)
> ; I(a;=male) > I(a;=female)

Output DP =

Four-Fifths Rule, US Equal Employment Opportunity Commission:

“selection rate for any race, sex, or ethnic group [must be at least]

four-fifths (4/5) (or eighty percent) of the rate for the group with the
highest rate”
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Identifying Fairness violations

Individual Fairness: Prediction Consistency

Occupation prediction from a person’s biography:

He graduated from law school with honors mp Attorney

She graduated from law school with honors mmp ???Paralegal???

_ 2 Z(h(zi[he])=h(z;[she]))
Output PC = ~




Individual Fairness in Social Science

Bertrand & Mullainathan (2004) studied racial
bias In the US labor market.

* The investigators responded to job ads in Boston and
Chicago newspapers with fictitious resumes.

* They randomly assigned African-American or white
sounding names to the resumes.

* The investigators concluded there is discrimination against
African-Americans: the resumes assigned white names
received 50% more callbacks for interviews.
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Demonstration
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Distributional Individual Fairness (DIF)

Find individual fairness violations algorithmically

DIF(h) 2 « SUpr.x »x Py ;dy(h(x), h(T(:c)))} \>
ksubject to Epy|dx(z,T(x))] <e.

/

/

e Auditor 7' is a map that finds fairness violations
e dy measures similarity between outputs
e Fair metric dy measures similarity between inputs

Yurochkin & Sun, ICLR 2021
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Auditing for IF violations

Test data: (z1,y1),..., (TN, YN);
DIF map T'(xz) for the model h that we are auditing;

some loss function £: Y x Y — R,

Hypothesis (A is individually fair)
Hy : loss ratio on similar individuals is at most o

N
, _ Jeh(T(%4),y4)
Compute loss ratios R = { IGICHED }Z_l

Reject Hy with confidence (1 — ) if Mean(R) — == Var(R) > ¢

Maity et al., ICLR 2021



Demonstration
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Learning fair metrics from data

/N

Samples with
protected attributes

Groups of
comparable samples

Pairs of comparable and
incomparable samples

d)((il?l,iljg) — (5131 — CEQ)TE(.I‘l — 33’2)

Mukherjee et al., ICML 2020
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Learning fair metrics from data

Samples with protected attributes:

gender/race information in the Adult dataset

[}
Learn “sensitive” directions with Logistic Regression,
lLe. V = {Ugenderv Urace}-

Ignore them in the fair metric: X = I — Pyan(v)-

d)(((l?l,wg) — (.Cl;’l — CEQ)TZ(wl — 51;2)

Men

Yurochkin et al., ICLR 2020
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Learning fair metrics from data

Group of comparable samples:
word embeddings of popular baby names

Find directions of major variation with PCA, i.e. V ={vy,...,vk}.

Ignore them in the fair metric: ¥ = I — Pypan(v)-
d)((.il?l,ilj'g) — (2131 — ZEQ)TE(Qil — 5132)

Mukherjee et al., ICML 2020



Questions?
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e Training fair models
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Training Individually Fair models

A variant of adversarial training: Train model accurate on
the available data and data similar in the fair metric

 Observe data

 Audit model with DIF: Find similar data where

algorithm performs differently
* Update model parameters to minimize

prediction error and DIF

 Repeat

Yurochkin & Sun, ICLR 2021
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Sensitive Set Invariance (SenSel)

ming, e L(h) + pDIF(R)
L(h) = E[l(y, h(z))]

e H: model class (e.g. neural nets with a certain architecture)

e /:)Y xY — R, is aloss function

e p: regularization parameter

Yurochkin & Sun, ICLR 2021
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Relation to Adversarial Robustness

Adversarial training: Train model accurate on the available
data and visually similar data. Different “fair” metric.

[ S PN

pig “airliner”

+0.005 x s

Image is from “A Brief Introduction to Adversarial Examples” (Madry & Schmidt, 2018)



Demonstration




Training Group Fair models

Optimization with (data-dependent) constraints: Train model
accurate on the available data subject to group fairness constraints

minhe% L(h)
subject to DP < ¢, where
>..ZL(a; =male, h(x;) =1) > .ZI(a; = female, h(z;) =1)

DP =
> . Z(a; = male) > .. L(a; = female)
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Demonstration




What is Your type of Fairness?

Group Fairness:

Carefully choose GF notion
appropriate for the application

Many open-source solutions
(AIF360, Fairlearn, TFCO)

Check individual fairness!

Individual Fairness:

« Carefully choose data for
learning the fair metric

« inFairness package is soon
to be open-source

* Check group fairness!

41



Questions?




Road Mmap Practical fairness methods

» Post-processing for fairness
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Post-processing for Individual Fairness

Eve
s | K

Dave

A

Alice

=iC

X Post-processed fair predictions

Bob

ea X

Charlie

=iC

Measuring IF on a graph:

Zz‘,j Wij(fz’ — fj)2 = 2f "ILf

Original predictions  Graph Laplacian

—yls + A ILE

arg minN|f —yl[|5 + Af (L
P - b
Y Y
Stay close to Penalize individual
original predictions fairness violations

Closed-form solution!

f=(I+\L)" 'y

Petersen et al., NeurIPS 2021



. Aurélien Geron
@aureliengeron

| noticed that DistilBERT loves movies filmed in India,
but not in Iraq, so | plotted the result for each country:
the resulting map is scary. #aibias

import pipeline g?;f e

line("sentiment-a_
movie was filmed p
movie was filmed

IVE', 'score'

12:35 AM - Mar 20, 2022 - Twitter Web App

374 Retweets 67 Quote Tweets 1,984 Likes
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from transformers import pipeline

classifier = pipeline("sentiment-analysis")
classifier(["The movie was filmed in India.",
"The movie was filmed in Iraqg."])

[{'label': 'POSITIVE', 'score': 0.9783285856246948},
{'label': 'NEGATIVE', 'score': 0.9872057437896729}]



Demonstration




Post-processing for Group Fairness

Optimized Score Transformation for
Consistent Fair Classification
Wei et al., 2021

FairScoreTransformer (FST): Available in AIF360
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Algorithmic Fairness pipeline

Choose IF fair metric / GF notion

Audit trained ML model for fairness violations

Post-process trained model to improve fairness

Train Fair model

49



Questions?




Yuekai 11:44 PM
LOL I’'m getting depressed

we write all these papers and all we keep hearing about is the Buckups

51



We ask Your input!

Let us Know
your thoughts
In a follow up
survey.
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Group Fairness References
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https://github.com/Trusted-AI/AIF360
https://github.com/fairlearn/fairlearn
https://github.com/google-research/tensorflow_constrained_optimization
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Individual Fairness References
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Blog-posts and Media

Al fairness

In today’s data-driven world, machine learning (ML) systems are increasingly used to
make high-stakes decisions in domains like criminal justice, education, lending, and
medicine. For example, a judge may use an algorithm to assess a defendant’s chance of
re-offending before deciding to detain or release the defendant. Although replacing
humans with ML systems appear to eliminate human biases in the decision-making
process, they can perpetuate or even exacerbate biases in the training data. Such biases
are especially objectionable when it adversely affects underprivileged groups of users.
The most obvious remedy is to remove the biases in the training data, but carefully
curating the datasets that modern ML systems are trained on is impractical. This leads to
the challenge of developing ML systems that remain “fair” despite biases in the training
data.

But what is fair?

There are two major families of definitions of fairness: (1) group fairness; (2) individual
fairness. Group fairness requires certain constraints to be satisfied at the population
level, e.g. proportion of hired job applicants should be similar across different
demographic groups. Individual fairness (also known as Lipschitz fairness) states that
hiring decisions for any pair of similar applicants (e.g. equally qualified applicants with
different names) should be the same.

£} Research (® 5 minute read

New research helps make Al fairer in
decision-making

Our team developed the first practical procedures and tools for
achieving Individual Fairness in machine learning (ML) and artificial
intelligence (AI) systems.
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InFairness

Aldo Pareja

Mayank Agarwal

J

Onkar Bhardwa



Collaborators

University of Michigan: Yuekai Sun, Amanda Bower, Songkal
Xue, Debarghya Mukherjee, Moulinath Banerjee, Alexander
Vargo, Fan Zhang, Subha Maity, Hamid Eftekhari

IBM Research: Mark Weber, Ben Hoover, Mayank Agarwal,
Aldo Pareja, Onkar Bhardwaj, Uri Kartoun, Bum Chul Kwon,
Kenney Ng, Zahra Ashktorab

University of Konstanz: Felix Petersen

Wells Fargo: Sherif Botros, Vanio Markov
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MIT-IBM
Watson Al Lab IBM Research

Thank You!

Paper links, videos, news, and code are on
my website
moonfolk.github.io



moonfolk.github.io

